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Several investigations of the elasticity and creep of oriented glass- 
reinforced plastics [1-4] revealed a considerable degree of anisotropy 
in these materials which are much more susceptible to shear creep 
than they are to creep in the direction of the reinforcing glass fibers. 
The equations used in [5,6] to describe the behavior of oriented glass- 
reinforced plastics take into account creep in the direction of rein- 
forcing fibers but only integrally, i . e . ,  as an addition to the elastic 
strains; as a result, a real material is replaced by a hypothetical body 
which is subject only to shear creep. 

Such an approach is convenient for selecting the optimum rein- 
forcing parameters and for solving problems in which the tangential 
stresses are approximately the same as, or larger than, the normal 
stresses on the principal anisotropy planes. 

In this connection, in many cases it seems desirable to make the 
mathematical model of such materials more precise and to take into 
account the nature of creep in the direction of the reinforcing fibers; 
this is especially important at elevated temperatures. 

This article describes the results of tests in which glass-reinforced 
plastic 27-83s was strained in tension along one of the principal di- 

rections of anisotropy. The experimental data were processed to reveal 
the fundamental laws of elasticity and creep of the material in question. 

The material--unwoven glass-reinforced plastic 26-68s--was sup- 
plied as a single batch in the form of plates measuring 250 x 250 x 3 
mm. Each plate consisted of six unidirectional lamellae stacked in 
such a way that the giass fibers in adjacent lamellae were normal to 
each other; as a result, the material had equal strength in these two 
directions. The specimens were cut in the form of strips along one of 
the directions of the reinforcing fibers; they were 10 mm wide, 8 mm 
thick, and 250 mm long. Examination of the ground side-faces of 
the specimens showed that the longitudinal layers of glass fibers were 
not strictly rectilinear. The nonlinearity was of two kinds: either in 
the form of slight distortions (observed in all the specimens) or in the 
form which resembled corrugations and which was observed only in 
isolated portions of some of the specimens. 

The first tests at elevated temperatures showed that specimens with 
corrugated glass fiber layers are characterized by stepwise creep and 
that their total strain is 80-100~ larger than that recorded for speci- 
mens with weakly distorted glass fiber layers. Exfoliation of the former 
specimens along the interfaces between adjacent lamellae was ob- 
served after tests. 

Subsequently, specimens of this kind were discarded; test resuhs 
obtained for such specimens were not included in the analysis. 

The tests were carried out on an apparatus described in [7]; the 
specimen temperature was maintained constant accurate to • C, and 
the strains were measured with gages (with a scale value of 0.001 mm) 
on a specimen with a gage portion 100 mm long. A mounted specimen 
was heated to the test temperature in 1-2 hr and held at that temper- 
ature for 1/2 hr, after which a tensile load was applied in two stages 
(in 2-4  sees). Subsequently the load remained constant for 10 hr in 
the case of most specimens; in some cases, creep tests lasted several 
times longer. The test temperature ranged from 25 to 200' C. The 
applied stress of 10 kgf/mm z was chosen so as to investigate the 
variation in the elasticity and creep properties for the entire temper- 
ature interval while at the same stress level. It was found that this 
stress approaches the long-term strength of the material at 200: C. 

The two-stage loading made it possible to plot three points on the 
graph of the relation o(s). It was found that this relation (for o -< 10 
kgf/mm a) may be regarded as linear, since the ratios Ao/As determined 
for the two stages were practically the same; the deviations were of 
opposite signs and random in nature. 

The final calculations for the experimental values of the elasticity 
moduli were carried out with data relating to the full load: Eex p = o /s .  

The test results are given below. Test temperatures are shown in 
the first line and elasticity moduli Eex p in the second line: their max- 
imum and minimum values calculated for various specimens (top), the 
arithmetic mean values (bottom), and the number of specimens tested 
at a given temperature (in parentheses). 

T o C = 25 40 70 100 t50 200 

2460--2860 2300--28t0 2390--2690 1950--2630 t830--1960 t670--2000 
E e x p ,  k g f / m m  2 - -  _ _  

(3) 2650 (4) 2570 (3) 2560 (5) 2280 (2) t900 (2) t840 

Eca 1, k g f / m m  2 = 2653 2579 243i 2283 2036 t783 

6E ' % = q-0.1 -t-0.4 --5.3 -f-0.2 -]-6.7 --3.2 

Glass fibers, of the kind used in structural materials, at temper- 
atures of up to 200' C, mainly experience elasticity deformation; their 
time-dependent strains constitute a negligible part of the instantaneous 
strains. The temperature dependence of the elasticity modulus of 
glass fiber is linear [8]. 

If a specimen of a glass-reinforced plastic is cut along the direction 
of reinforcing fibers, the decisive part in its elasticity properties is 
played by longitudinal glass fibers. It is therefore natural to try to ap- 
proximate the temperature dependence of the eIasticity modulus of a 
glass-reinforced plastic by a linear relation. 

The experimental data were processed by the method of least 
squares under the assumption of a linear correlation between E and T; 
as a result, the following formula was obtained: 

E = 2W/6 -- 4. 93 T (E in kgf/mm2; T in ~ (1) 

Values of the elasticity moduli calculated from (1) and denoted by 
Eca 1 are given in the third line of the table above. While the relative 
deviations of Eexp (for various specimens) from the average value at a 
given temperature reach 13%, the relative difference between the 
average experimental and calculated values, 

E c a l - - E e x p  

~ E  - -  Eca l  , (2 )  

does not exceed 7% (see the fourth line in the table), i . e . ,  formula 
(1) is applicable. 

Creep test results are characterized by a wide scatter and creep 
curves obtained for different specimens tested at the same temper- 
atures and stresses often differ not only quantitatively but also qualitative!y. 

This may be attributed to the existence of several mechanisms 
of creep and to the nonuniformity of the material, as a result of which 
various mechanisms may predominate in various specimens. 

If it is assumed that glass fibers are rectilinear, a specimen of the 
kind under consideration can be modelled by two parallel elements: 
one which is elastic (and corresponds to the longitudinal glass fibers) 
and the Other which is susceptible to creep (and corresponds to the 
transverse material layers and to the interlayers of the bonding constit- 
uent in the longitudinal layers). A model of this kind was used in [9-101 
for the case of instantaneous deformations. Let the total strains of 
both elements be the same and let the strain-stress relationship for 
the first and second element be described by 

8 - -  L,1, 
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Here c~l, c*zh El, and E z denote  stresses and the e l a s t i c i t y  modul i  of 
the e l emems ,  Jc~ is the creep operator (see [11]), t is the t ime ,  and 

• and (x are constants.  At % = const,  i t  follows from (3) that  

= @ 2  q- "tl1+~ (A = const). 

If the r e l a t i ve  cross-sec t ional  areas of the e l emen t s  are f t  and f2, 
respec t ive ly ,  we may write (for the average  stress of the model)  

= hoe " I2c~2, (4) 

Equations (3) and (4) m a k e  it possible to descr ibe the re la t ion  o(~), for 

the mode l ,  in the form 

8 = ~, [ t  + (• - ~) a~*  ( -  [3)1 

,3 - -  Z h &  3 
(5) 

Here 3~* (--[3) is Rabomov's  operator [11]. 

In accordance  with the properties of this operator,  creep at con-  

stant stress a sympto t i ca l l y  d iminishes ,  if t ->  % in formula  (5), 

.__> _ _  : c o  e ~,,vL' 1 --81 , 

Taking typ ica l  values  of the parameters  in quest ion (g z = 7000 

kgf /mm2,  f t  = 0 .3 ,  f2 = 0 .7 ,  and o = 10 kgf /mma) ,  we obtain ~/~ = 

= 0.005. This l i m i t i n g  strain corresponds to the stage at  which the 

ent i re  load is carr ied by the e l a s t i c i ty  e l e m e n t ,  i . e . ,  tire f iberglass.  

The a p p l i c a b i l i t y  of formula (5) for descr ib ing the behavior  of rea l  

ma te r i a l s  is i l lus t ra ted  by data  in Fig. 1, where creep strain is plot ted 

agains t  t i m e  in l o g a r i t h m i c  coordinates .  The expe r imen t a l  points were 

obtained for one of the specimens  tested (c~ = 5 k g f / m m  2 and T = 100 ~ 
C), whi le  the curve  corresponds to the function 4.1 ,.9_o-7" (--0.253) l0  -s. 

Unfortunately,  these functions (or ra ther  the Ml t t ag -ge f f l e r  functions 

l inea r ly  re la ted  to them) are  tabula ted  [12] only for va lues  c~ = --0.  q, 

whi le  most  expe r imen t a l  curves obta ined in the course of this inves-  

t iga t ion  are cha rac te r i zed  by larger  vaIues of c~. 

In addi t ion  to creep due to the redis t r ibut ion  of stress, de format ion  
due to the s t ra ightening of glass fibers is possible.  The form of the 

distorted long i tud ina i  layers  in spec imens  after tes t ing resemb!es  a 

sinusoid. Denot ing the  rat io  of the sinusoid ampl i tude  to the spec imen  

leng th  by a l l  = p and comput ing  the l eng th  of the sinusoid arc y = 
:- a sin 7rx/l 

21 (k : gP 
S = - 7  V 1 + tup) z E (I~, V ~ )  ' g ~ ) '  (6) 

where E(k,~r/2) is the c o m p l e t e  e l l i p t i c a l  in tegra l  of the second kind, 

we  obtain an expression for the m a x i m u m  strain of the m a t e r i a l  due 

to the s t ra ightening of glass fibers 

8 - - !  
82~-- l U )  

For weaMy distorted fibers, 9 >- 0.07 of the factor in (6) 

E (k, 1/2at) ~ a/2 (see [13]); ~ / t  + (rip) ~- ~. I @ 1/2 (~p)% 

Then, from ( '7)we have  

e2 co --~ 5 p ~  ( 8 )  

This formula makes  it possible to e s t i m a t e  the m a x i m u m  strain 

of the m a t e r i a l  due to the s t ra ightening of fibers in tension accura te  

to about 1% of s ~ .  
If the strain e ~  = 0.0002 (which is 4 - 5 %  of the e l a s t i c i ty  strain 

at o = 10 k g f / m m  S) is regarded as neg l ig ib ly  smal l ,  i t  follows from 

(8) that  to obtain a m a t e r i a l  whose fibers may  be regarded as straight ,  

one  must  s t ipula te  that  p = 0 .02.  

The fact  that  p varies  considerably  from spec imen to spec imen  is 
par t ly  responsible for the qua l i t a t i ve  and quan t i t a t ive  differences in the 

creep properties of these specimens,  since t e rmina t ion  of the mecha-- 

nism in quest ion for Iow p should be ref lected in the nature of creep 
C U r V e S .  

Creep of the m a t e r i a l  studied at room tempera ture  (25 ~ C) is ac-  

cura te ly  described by a power function in the ent i re  t i m e  interval  in- 

ves t iga ted  (about 800 hr): when plot ted in log eC-log t coordinates 

(where sc  is creep strain), the expe r imen t a l  points obtained for various 
specimens  tested at  o = 10 k g f / m m  ~ l i e  on straight  l ines  p rac t i ca l ly  

pa ra l l e l  to each  other (Fig. 2). 

This no longer holds at e l eva ted  temperatures  (for which the dura-  
t ion of c reep  tests was 10 hr): under these c i rcumstances ,  s traight  

log s t - l o g  t curves are obta ined for some of the specimens,  whi le  the 

r e l a t ion  s t ( t )  cha rac te r i z ing  other specimens  is nonlinear;  in the la t ter  

case,  the angle  of the slope of the log s t - l o g  t curves decreases  with 

t ime  as shown in Fig. 3, where 'da ta  obta ined at T = 100 "> C and o = 

= 10 k g f / m m  2 are p lot ted .  In both cases, i t  is possible,  by chosing 

parameters  c~ and 8, to descr ibe  the expe r imen t a l  curves with the aid 
of the function a~* ( - g ) ;  at D :: 0 we obtain a power funct ion 

s e = A t r+~ (9) 

The above expression was used to describe creep curves obta ined 

at  various tempera tures .  Values of the (1 + ~)  coef f ic ien t  for speci -  
mens whose creep obeyed Eq. (9) without  substant ia l  devia t ions  (at  

leas t  in the 10-600 rain t i m e  interval)  are g b e n  below: 

fil 
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Fig. I 

T, ~ = 25 40 70 1O0 150 

0.09--0.11 0.07--0.12 0.11--0.12 0.I0--0.12 0.i4--0.22 
i+~ = (5) 0.10 (2) 0.09 (2) 0.12 (3) 0.~l (2) 0.1g 

' j i 
[ t, . ,i .  

10o r 

on8 - -  C 

gig. 2 

Bearing in mind the considerable  scat ter  of s train values recorded 
for r ep l i ca t e  specimens ,  i t  may  be cond i t iona l ly  agreed that  a l l  the 

r ema in ing  curves obey Eq. (9); the error wi l l  be 2-4~ of the to t a l s t r a in  
and wi l l  be  wi thin  the scat ter  band. 

The creep at 200 ~ C also fol lowed Eq. (9), but a stepwise increase  

in strain at cer ta in  instants was observed in a lmost  a l l  the specimens;  

consequent ly ,  no data  on (1 + a)  at this t empera tu re  are reproduced 

above.  The degree  of scat ter  at  200 ~ C is subs tan t ia l ly  higher and the 
creep strain at this t empera ture  is severa l  t imes  iarger  than that at the 
iower tempera tures .  

b f " ~ - I  I t ,  m i _ ~ _ ]  r 

0. f q g5 ~ i , JO 2' 
Z.)O0 
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Analysis of the results obtained indicates that the (1 + c 0 coef- 
ficient is practically independent of temperature in the interval 25- 
100 ~ C, i . e . ,  that the creep curves in this temperature interval are 
similar. Having selected an arbitrary instant (in this case to = 420 
min) and having determined eC(t0) for various specimens and temper- 
atures, we can--utilizing the similarity of creep curves-fully de- 
scribe the relationship between creep strain and temperature. Data 
obtained in this way were processed by the method of least squares; 
under the assumption of linear correlation between r and T, we ob- 
tained 

~c = (45 + 0.294 T) t0 -5. (10) 

The maximum relative deviation 5G of the average experimental 
strain from the calculated value is 1.0%: 

T, ~  25 40 70 1OO 
44--63 52--65 60--70 60--87 

10ae~ --(5) 52 (4) 57 (2) 65 (5) 74 

105~ = 52.4 56.8 65.6 74.4 

8~, % =  +0 .8  --0.4 + l  + 0 . 6 ,  

Tests on three specimens at o = 5 kgf/mm 2 and T = 100 ~ C showed 
that the average total strain is half that recorded for specimens tested 
at ~ = 10 kgf/mm z and T = 100 ~ C; consequently, it may be concluded 
that the stress-strain relation is linear. 

Combining the results obtained, we may (at least for o -~ 10 
kgf/mm z and T --< 100 ~ C) write an expression, 

e = a - - ~  + t0-5 "~o ( + cT) \ '~o /  + "r (T - -  25), 

Here a = 2776 kgf/mmZ; b = 4.93 kgf/mm2; o o = 10 kgf/mmS; 
1 + c~ = 0.1; e = 0.2841 ~ d = 45; to = 420 rain; ), is the linear ex- 

pansion coefficient (which, according to tentative determination, is 
equal to 1.3 �9 10 -3 ~ -i. 

The author wishes to thank P. V. Sofienko for his assistance with 
experimental work. 
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